Automated correct-by-construct methodology for RTL design and analog mixed-signal test bench generation

Enables early design closure of mixed-signal SoC

Lakshmanan B, Murugesh Prashanth S, Atul R Lele, Ranjit K Dash
Texas Instruments (India) Pvt. Ltd.
Acknowledgment

• Keith Kunz, Neeraj Saxena & Padmini S of Texas Instruments (TI) for their continuous support and motivation

• Ravi C V & Harikrishna P of TI for their support in interception of these methods in several product executions

• Devendra S, Sonal R Sarthi, Rajesh Kedia & Cletan Sequeira of TI for their support in implementing the RTL generation aspects
Objective

• Context
 – Analog IP development & verification
 – AMS SoC integration & verification

• Executable specification driven methods for
 – Automated analog test bench generation
 – RTL & ABMOD stub generation
Motivation: Analog mixed signal

- Increasing analog integration
- Increasing system complexity, flexibility and richness of functionalities
- Time-to-market pressures & first pass silicon success
- Finding issues later in the product or design cycle is expensive

Quality product on time in the hands of end user
Conventional IP verification flow
Verification bottlenecks

- IP sign-off & ABMOD validation test benches
 - Manual, duplicate and error prone
 - Review is much later in design cycle
- AMS at SoC level is very late in design cycle
- Communication bottleneck and complexity between different teams of complementary competencies

Typical time for VCD generation is the bottleneck

Integration document (Simple)
- Only default bits
- Pin attributes

SOC team
- Verify integration doc
- Use the default value info for RTL coding

VCD generated
- Based on default bit value

Test bench creation
- Convert VCD to spice
- Provide analog signal
- Include Parasitics

Results analysis
- Manual

© Accellera Systems Initiative
Improved IP verification flow proposal

1. Specification
 - Block level Simulation
 - Block Schematic
 - Block level BMOD
 - Validation

2. Exec. Spec based automation
 - IP level schematic
 - IP level BMOD
 - Netlist Extraction

3. Parameterisable loads, inputs
 - IP level spice test bench (only analog conditions)
 - IP level Spice simulation
 - IP level BMOD test bench

4. SoC Level
 - SoC level simulations
 - Verification & VCD generation
 - Punch2report - User spec gen. (Assertions)

5. Mixed-signal sim
 - BFM

6. Verification & VCD generation / AMS cosimulation
 - Punch2report - Waveform post processor

7. © Accellera Systems Initiative
Integration specification driven flow

Test bench generation

- Improved infrastructure for efficient and timely communication between different teams of complementary competencies
- Complements & supports existing input methods: A separate VCD & SPICE stimuli
- Implementation medium: Perl

Spec document: Complex system scenarios are captured – through iterations

Integration document (extended)
- Default bits
- All signal transitions
- Load and Parasitics

Spec file:
- List of corner files to review
- List of signals, Measurements, goals

Sim Info (PVT), DUT netlist with automated net naming

Input condition:
Waveforms generated by black-box simulation

Test bench
Dumped directly from integration document

Review of Integration document
Signed off by SoC team

Waveform Post-processor

System concept
System specification
System integration
IP specification
IP design
IP sign-off
System sign-off

SoC VCD & manual test bench

Models, circuit matures for reuse scenario:
Test bench with valid stimuli

Models, circuit matures for new development

© Accellera Systems Initiative 8
RTL & ABMOD stub generation

- RTL stub generation, system integration & verification
 - Pin multiplexing information for the interfaces & general purpose IOs
 - Truth tables
 - Translation of address mapping of registers
 - Interrupt & DMA trigger connections

- Verification
 - IFV based connectivity checks & assertions generation
 - Input boundary condition assertions for ABMOB
 - Reset/default states of the input control signals
 - Valid voltage/current levels

- Implementation medium: DocZone® XML, Xerces® XML parser, Magillum®, Atrenta® GenSys & Perl
Extension to RTL & ABMOD stub generation

• Specifications are developed in mark-up language (XML, JSON, etc.) ➔ XML parser
Flow: Inputs

• Integration document (csv format)
 – Generated from data sheet (XML or JSON, etc.) and augmented

• Top level spice netlist (spice netlist)
 – DUT instantiated
 – Name of NET connected to each pin should be same as the pin name with “fixed prefix”

• Simulation Information file (perl file)
Flow: ISD & its contents

<table>
<thead>
<tr>
<th>Sub-Block</th>
<th>Ball</th>
<th>Port</th>
<th>Direction</th>
<th>Register</th>
<th>Bits</th>
<th>Description</th>
<th>Default Bits</th>
<th>Power Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efuse</td>
<td>Voltage domain</td>
<td>Min</td>
<td>Nom Max</td>
<td>Associated Ground</td>
<td>Current</td>
<td>IR Drop</td>
<td>Location</td>
<td>Source</td>
</tr>
</tbody>
</table>

| Leakage on Power Ports (mA) | Analog/Digitalclock (A/DIC) | Power/Ground (P/G) | Snoop/Async (S/A) | Pad/Port (P/S) | Control (H/LIS) | PER_TECH (VIRE/CMOS) | OUTPUT_CLASS (PER) | MIN_ROUTE_SPACING | MIN_ROUTE_WIDTH | Active Power (A) | LDO shutdown condition (LDO outputs) |

Block level interface

Remarks

Newly added fields

- **Feedback point**: PBIT [dc voltage, value for 0 bit, value for 1 bit, 0-1 time delay(s), 0-1 rise time(s), 1-0 time delay(s), 1-0 fall time(s), bit transition time(s), delay time(s), periodic / non-periodic], bit value pattern(1/0)
- **Routing**: Capacitor, Resistor
- **Routing**: Inductor
- **Routing**: Load Capacitor, Cap ESR
- **Routing**: Load Inductor, Ind ESR
- **Routing**: Load Resistor

© Accellera Systems Initiative 2014

Accellera Systems Initiative
Flow: Simulation Information file

$voltage_corner="typ"; # typ, min or max
$temperature=27;
$process="nominal"; #nominal, weak, strong, strong_lkg, skewnp or skewpn
$instance_name="I0"; #NET name prefix used in spice file
$netlist_path="/sim/DUT/TESTBENCH_AUTO/tb_DUT.spi";
$model_path="/db/pdk/tech_node/current/models/model.paths.scs";
input for transient simulation
$TSTEP="10e-9";
$TSTOP="5e-3";
$TPUNCH="100e-6,400e-6,600e-6,3.4e-3,3.7e-3,4.0e-3";
$int_doc_file="/sim/DUT/TESTBENCH_AUTO/dut_pin_report_1p0.csv";
$tb_file_name="atb_dut.spi";
Optional (Default=No)
$auto_file_name="yes";
Optional (Default=PWD)
$run_path="/sim/DUT/TESTBENCH_AUTO";
Optional (Default=0)
$debug=1;
$debug_log="debug.log";
Flow: Waveform post processing

• Allows user to specify
 – List of waveform files
 • Preferably corner simulation results of the same design where the expected results are comparable or similar
 – List of signals to be processed in all the punch files
 – The processing and measurements to be done on the specified waveforms
 – Expected range of measurement for automatic check
 – Format of the table in which the report to be consolidated

• Generates
 – An HTML report in the user specified format
 – A consolidated waveform file with all the signals that the user processed
Flow: Waveform post processing

User Interface

Punch2report_pc.pl [-help] [<punch_list_file> <signal_list_file> <report_name>]

- **-help** Provides usage information on command line
- **<signal_list_file>** The file that specifies the signals to be processed, type of processing / measurement, intended goals for comparison and highlighting in the report and an inherent report content formatting.
- **Comment:**
 *
- **User format for table generation:**
 *
  ```
  *{ NEW_TABLE <argument_list>}
  *{NEW_TABLE <title_as_quoted_string> <comments> <column_heading_1> ... <column_heading_2>}
  ```
- **Signal processing:**
  ```
  <signal_name> [time] [{command [args]}]
  <signal_name> {<measurement_operation_1> [<arguments>] [<signal_name> [<goal>]] ... [{<measurement_operation_n> [<arguments>] [<signal_name> [<goal>]]]]}
  ```
- **Waveform measurements & Commands supported:**
  ```
  GETX, GETY, AVG, RMS, FREQ, DELAYXX, DIP, PEAK, SET_THRES, SET_GP, SET_TOL, TRANS,
  TRANSITION_TIME, RISE_FALL_TIME, NEW_TABLE
  ```
- **Macros:**
 Combination of the above can be defined as a user defined macro
Example: Waveform post processing

* Defines a new report table by name “Power-up Sequence” with one column
*{NEW_TABLE "Power-up Sequence
" "
" "Delay" }

* Measuring delay between VI0_EN_1P8V & VXIO.GEN_1P8V
*VXIO.GEN_1P8V {DELAYXX 1 1.6 VI0_EN_1P8V 1 1.3 >500e-6&<540e-6}

* Defines a new report table by name “Power-up Measurements” with 7 columns
*{NEW_TABLE "Power-up Measurements
" "
" "Value before PORZ
(V or A)" "Value after PORZ
(V or A)" "N_{TR}" "T_{TR}
(Secs)" "T_{R/F}
(Secs)" "Dip
(V or A)" "Peak
(V or A)"}

VI0_EN {GETY 0 <10e-3} {GETY 4.5e-3 >=1.4}
VXI0.VDD_INT_1P2V {GETY 0 <10e-3} {GETY 4.5e-3 >0.9&<1.4} {dip 110e-6 5e-3 >0.8&<1.2} {peak 15e-6 5e-3 <1.3}
VI0_VDD_AD_1P8V {GETY 0 <10e-3} {GETY 4.5e-3 >=1.6}
VI0_VDD_CORE_1P2V {GETY 0 <10e-3} {GETY 4.5e-3 >=0.8} {dip 4.1e-3 5e-3 } {peak 4e-3 5e-3}
VI0_VDD_SRAM_1P2V {GETY 0 <10e-3} {GETY 4.5e-3 >=0.8} {dip 4.2e-3 5e-3 } {peak 4e-3 5e-3}
VI0_PORZ_CORE_1P2V {GETY 4.0e-3 <10e-3} {GETY 4.5e-3 >=0.8}
END -1
Summary

- Automated, error free test bench & design model generation mechanism
- Input format definition: An integration spec document format is defined to suit:
 - Machine readable & Human readable for ease of review
 - Inputs with pin attributes, simulation requirements as per specification
 - Stimuli format – embedded in the integration document
 - Enable efficient review by waveforms generated for each scenario
 - Improved infrastructure for efficient and timely communication between different teams of complementary competencies
 - Test bench components like load, parasitic information
 - Push button digital RTL and analog BMOD generation
- Engine:
 - Perl based engine to process the ISD and generate test bench, documentation (complex waveforms) for review
 - Waveform post processor: Signal measurement information & Goal checking
 - Generates HTML based report highlighting failure of goals
- Extension:
 - Generation of components for database hand-off process for SoC integration
 - Potential to extend it for a push-button sub-system level simulation and validation flow
- New process flow to improve quality, efficient and early verification
Future scope

• IPXACT compatibility & interoperability

• Analog test bench generation
 – Wider analog functional portfolio
 – Currently simple power management functions supported

• Verification of SoC memory map, connections such as DMA triggers and interrupts

• Supporting synthesis/STA timing constraints generation

• Analog assertions generation
Conclusions

• Bottlenecks exist in analog IP verification sign-off and closure
• Affects SoC maturity and time-to-market
• Automated, error free test bench & design model generation mechanism (input format & script based engine)
• Specification (XML, widely used format) to verification sign-off
• Potential to extend it for a push-button sub-system level simulation and validation flow
Questions

Thanks for your interest, attention, and time