Problem Statement

Pre-Silicon Debug at Chip Level takes considerable effort and consumes about 30% of chip design cycle time. Often bugs are sighted late in the design-cycle resulting in re-work, re-spin and tremendous cost to company.

Following are the objects of the Automation,

<table>
<thead>
<tr>
<th>Objective</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repository for failure knowledge</td>
<td>If the failures are well documented in the tool, helps in easy coordination and communication.</td>
</tr>
<tr>
<td>Automatic triaging</td>
<td>Reduce manual effort on well known signatures.</td>
</tr>
<tr>
<td>Meaningful bucketing</td>
<td>Improve bucketing by incorporating architecture & transaction knowledge.</td>
</tr>
<tr>
<td>Assist in prioritization</td>
<td>Prioritize failures based on transaction types, signature frequency, DUT configuration etc.</td>
</tr>
<tr>
<td>Team co-ordination</td>
<td>Need for efficient co-ordination and effective in cross-site communication.</td>
</tr>
</tbody>
</table>

Automation Architecture

- **Automation Architecture Model**
 - **Rule Based Architecture Model**
 - **Exact Rule Match**
 - **Known Bug**
 - **Bug DB**
 - **Transact Error**
 - **Seed, Test Configuration**
 - **RTL Version**
 - **Testcase Name**
 - **Transaction Signature**
 - **Error Description**
 - **See d No**
 - **Testcase Name**
 - **Simul ation Fail ure**
 - **Path A**
 - **Path B**
 - **Path C**

- **Over-all savings from method**
 - **Regression/Log Reports**
 - **Checker Error Based Classification**
 - **Signature Based Classification**
 - **Number of Buckets In**
 - **Typical Weekly Regression**
 - **Number of known buckets**
 - **auto triaged**
 - **10 to 15 (approx. 3%)**
 - **10 to 20 (approx. 30%)**
 - **Number of buckets**
 - **debugged every week**
 - **150 to 200 (50% to 70%)**
 - **Usually 100%**
 - **Life of bug in Full chip**
 - **Typically between 3 to 5 weeks to record a new signature**
 - **Typically 1 week to record new signatures.**
 - **Cross GEO co-ordination**
 - **Every day stand-up meeting in morning**
 - **Followed by late night sync-up in 1:1 with counterparts on debug progress**

- **Search, Match, Update**
 - **Known failures meta data (aka signature) is stored with in database.**
 - **Rules are coded to indicate match with known signatures.**
 - **Exact match triggers auto-triage.**
 - **When Exact match is not present, match with high correlation is looked for.**
 - **A high correlation leads to a new bucket entry formed.**
 - **A low correlation index triggers manual entry creation in signature database.**

- **Pre-Silicon Debug Automation using Transaction Tagging and Data-Mining**
 - **Kamlesh V, Senthilkumar N, Kaustubh G, Deepak S**
 - **Infosys Limited, Bangalore, India**
 - **Email: Kamlesh.v@infosys.com, Senthilkumar.n@infosys.com, Kaustubh.g@infosys.com, Deepak.s@infosys.com**

Reference

Efficient Failure Triage with Automated Debug: a Case Study Author: Sean Safarpour, Eavean Qin, and Mustafa Abbas

Advanced Techniques for RTL Debugging Author: Yu-Chin Hsu, Bassam Tabbara, Ying-An Chen, Fursingh Tsai

From RTL to Silicon: The Case for Automated Debug Author: Andreas Veneris, Brian Keng, Sean Safarpour

Debug Limited No More: The Case for Debug Automation Author: Andreas Veneris

© Accellera Systems Initiative