Wednesday, September 13, 2023										
Start	End	General Sessions - Grand Victoria OVGUN								
9:00	9:15	DVCon India 2023 Inauguration								
9:15	10:00	Vision Talk: Autonomous Verification: Are we there yet? Sandeep Mehrotra, VP Engineering, Synopsys								
10:00	10:30	Keynote: Smart Verification: Faster is not enough! Abhi Kolpekwar, VP & GM – DVT, Siemens EDA								
10:30	11:30	Industry Panel: Closing DV Gaps in ever increasing SOC Design size Vs shrinking Time to Market Cadence								
11:30	11:45	5 Tea Break & Networking								
Start	End	Track 1 - Grand Victoria B	Track 2 - Grand Victoria A	Track 3 – Robusta & Arabica	Track 4 - Brainbox					
11:45	12:30	Tutorial 1A: Static Signoff Best Practices – Learnings and experiences from industry use cases Real Intent	Tutorial 2A: Improving Debug Productivity using latest AI & ML Techniques <i>Cadence</i>	Short Workshop 3A_1: Accellera	Short Workshop 4A_1: Identifying and overcoming Multi-Die System Verification Challenges Synopsys					
12:30	13:15			Short Workshop 3A_2: Advanced Core/SoC Verification for RISC-V and Other Cores Breker	Short Workshop 4A_2: Accelerating heterogeneous SoC designs with prebuilt blueprints and cloud hardware assisted emulation and prototyping SoC.one					
13:15	14:15									
14:15	14:45	Keynote: Journeying Beyond AI: Unleashing the Art of Verification P R Sivakumar, Founder and CEO, Maven Silicon								
14:45	15:15	5 Keynote: Al for Chip Design: Scaling DV Capacity to Meet Massive Demand Growth Dr. Ziyad Hanna, GM-Israel, Cadence								
15:15	15:45	Kownoto: Puge Transistore Chine and Wayoe. A Panoramic View of the Journey from Fourte a Quintillion and Poyond								
15:45	16:00									
16:00	16:45	Tutorial 1B: Taking the first steps towards verifying billion gate designs with formal methods	Tutorial 2B: Fast track RISC-V System Validation Using Hardware Assisted Verification Platforms	Short Workshop 3B_1: Automation of Realisation Layer for IP/SoC using PSS & SystemRDL Agnisys	Short Workshop 4B_1: An Overview of Ethernet 10Base-T1S in Automotive SoCs and its Verification Synopsys & ST Microelectronics					
16:45	17:30	Axiomise 30	Synopsys	Short Workshop 3B_2: CXL Verification using Portable Stimulus Vayavya	Short Workshop 4B_2: UCle based Design Verification Cadence					
17:30	19:00									

Thursday, September 14, 2023 DESIGN AND VERIFICATION"										
Start	End						Poster Area			
9:00	9:15									
9:15	9:45	Keynole: Tessolve Semiconductor Put Ltd								
0.45	10:15	Tessolve semiconductor Pvi. Ltd.								
9:45	10:15	Qualcomm								
10:15	11:15	Industry Panel: Revolutionizing System-Level Verification and Validation: Implications for India's Innovation Drive Siemens EDA								
11:15	11:30									
Start	End	Track 1 - Grand Victoria B	Track 2 - Grand Victoria A	Track 3 – Robusta & Arabica		Track 4 - Brainbox				
11:30	13:00	Paper Session 1A (New Design Ideas & Disruptive Trends)	Paper Session 2A (Formal Verification)	Paper Session 3A (Design & Verif. Reuse & Automation)	Paper Session 4A (Mixed Signal & Low Power)					
11:30	12:00	1A1 - [8717] No gain without RISC- A novel approach for accelerating and streamlining RISC-V Processor functional verification with register change dump methodology.	2A1 – [628] Revolutionizing Proof Convergence for Algorithmic Designs: Combining Multiple Formal Verification Tools	3A1 – [9578] Coverage Acceleration and Testcase Pruning using Smart Stimuli Generator in SOC Verification	4A1 - [3422] Wrong clamps can kill your chip!! find them early					
12:00	12:30	1A2 - [5538] Code-Test-Verify all for free – Assertions + Verilators	2A2 - [9536] Quiescent Formal Checks (QFC) for Detecting Deep Design Bugs – Sooner and Faster	3A2 – [6347] Efficient Verification of Arbitration Design with a Generic Model	4A2 – [9423] Robust Low Power Verification Strategy for a Complex 3DIC System with Split Power Management Architecture					
12:30	13:00	1A3 - [1971] Efficacious Verification of Irreproachable and Steady Data Transfer Protocol for high-speed die-to-die communication on a 3DIC Chip	2A3 – [6042] FV: A Robust Solution for Tackling Design Complexities –A Case Study on In-Band ECC	3A3 – [6533] - Python empowered GLS Bringup Vehicle	4A3 – [5290] Fast Convergence Modular Advanced Smart-Hybrid Testbench (FCMAST) to automate and expedite SoC gate level simulations closure					
13:00	14:00			Lunch Break						
14:00	14:30									
14:30	16:00	Paper Session 1B (Verification & Validation)	Paper Session 2B (Formal Verification)	Paper Session 3B (Design & Verif. Reuse & Automation)	Paper Sessior	n 4B (Functional Safety & Security)				
		Paper Session 1B (Verification & Validation) 1B1 – [6285] Netlist Enabled Emulation Platform for Accelerated Gate Level Verification	Paper Session 2B (Formal Verification) 2B1 – [779] Pseudo–LRU Not Efficient in Real World? Use Formal Verification to Bridge the Gap	Paper Session 3B (Design & Verif. Reuse & Automation)3B1 - [8516] Tackling the verification complexities of a processor subsystem through Portable stimulus		cation of Bus Health Monitor in Automotive	Poster Hours 11:15am to			
14:30	16:00 15:00	1B1 – [6285] Netlist Enabled Emulation Platform for	2B1 – [779] Pseudo–LRU Not Efficient in Real World? Use	3B1 – [8516] Tackling the verification complexities of a	4B1 – [9164] Holistic Verifie SoC using BHMVC and Pe	cation of Bus Health Monitor in Automotive				
14:30 14:30	16:00 15:00 15:30	 1B1 - [6285] Netlist Enabled Emulation Platform for Accelerated Gate Level Verification 1B2 - [2304] A Faster and Efficient Constraint Verification 	 2B1 – [779] Pseudo–LRU Not Efficient in Real World? Use Formal Verification to Bridge the Gap 2B2 – [264] Paradigm Shift In Power Aware Simulation 	3B1 – [8516] Tackling the verification complexities of a processor subsystem through Portable stimulus	4B1 – [9164] Holistic Verific SoC using BHMVC and Po 4B2 – [2784] RISC V Subsy ASIL D	cation of Bus Health Monitor in Automotive araHunter	11:15am to			
14:30 14:30 15:00	16:00 15:00 15:30	 1B1 - [6285] Netlist Enabled Emulation Platform for Accelerated Gate Level Verification 1B2 - [2304] A Faster and Efficient Constraint Verification Methodology for GFX SOCs 1B3 - [2910] Breaking Down Barriers: Achieving Seamless 	 281 - [779] Pseudo-LRU Not Efficient in Real World? Use Formal Verification to Bridge the Gap 282 - [264] Paradigm Shift In Power Aware Simulation Using Formal Techniques 283 - [2523] Covering all the bases: Coverage-driven Formal Verification Sign-off of Pipelined Error Detection Filter 	 3B1 – [8516] Tackling the verification complexities of a processor subsystem through Portable stimulus 3B2 - [285] UVM Sequence Layering for Register Sequences 3B3 – [1126] HISIG- An Efficient Gate Level Simulation Flow 	4B1 – [9164] Holistic Verifie SoC using BHMVC and Pe 4B2 – [2784] RISC V Subsy ASIL D 4B3 – [9612] Formal Verifie	cation of Bus Health Monitor in Automotive araHunter stem Diagnostic Coverage Closure Flow for	11:15am to			
14:30 14:30 15:00 15:30	16:00 15:00 15:30 16:00	 1B1 - [6285] Netlist Enabled Emulation Platform for Accelerated Gate Level Verification 1B2 - [2304] A Faster and Efficient Constraint Verification Methodology for GFX SOCs 1B3 - [2910] Breaking Down Barriers: Achieving Seamless 	 2B1 – [779] Pseudo–LRU Not Efficient in Real World? Use Formal Verification to Bridge the Gap 2B2 – [264] Paradigm Shift In Power Aware Simulation Using Formal Techniques 2B3 – [2523] Covering all the bases: Coverage-driven Formal Verification Sign-off of Pipelined Error Detection Filter Tea B Paper Session 2C (Formal Verification) 	 3B1 - [8516] Tackling the verification complexities of a processor subsystem through Portable stimulus 3B2 - [285] UVM Sequence Layering for Register Sequences 3B3 - [1126] HISIG- An Efficient Gate Level Simulation Flow for a Hard IP Inside a Soft IP 	 4B1 – [9164] Holistic Verific SoC using BHMVC and Potential 4B2 – [2784] RISC V Subsy ASIL D 4B3 – [9612] Formal Verific Hardware Security 	cation of Bus Health Monitor in Automotive araHunter stem Diagnostic Coverage Closure Flow for	11:15am to			
14:30 14:30 15:00 15:30 16:00	16:00 15:00 15:30 16:00 16:15 17:45	 1B1 - [6285] Netlist Enabled Emulation Platform for Accelerated Gate Level Verification 1B2 - [2304] A Faster and Efficient Constraint Verification Methodology for GFX SOCs 1B3 - [2910] Breaking Down Barriers: Achieving Seamless Protocol Conversion with UVM Component Layering 	 2B1 - [779] Pseudo-LRU Not Efficient in Real World? Use Formal Verification to Bridge the Gap 2B2 - [264] Paradigm Shift In Power Aware Simulation Using Formal Techniques 2B3 - [2523] Covering all the bases: Coverage-driven Formal Verification Sign-off of Pipelined Error Detection Filter 	 3B1 - [8516] Tackling the verification complexities of a processor subsystem through Portable stimulus 3B2 - [285] UVM Sequence Layering for Register Sequences 3B3 - [1126] HISIG- An Efficient Gate Level Simulation Flow for a Hard IP Inside a Soft IP reak & Networking 	 4B1 – [9164] Holistic Verifie SoC using BHMVC and Pe 4B2 – [2784] RISC V Subsy ASIL D 4B3 – [9612] Formal Verifie Hardware Security 	cation of Bus Health Monitor in Automotive araHunter rstem Diagnostic Coverage Closure Flow for cation + CIA Triad: Winning Formula for	11:15am to			
14:30 14:30 15:00 15:30 16:00 16:15	16:00 15:00 15:30 16:00 16:15 17:45	1B1 – [6285] Netlist Enabled Emulation Platform for Accelerated Gate Level Verification 1B2 – [2304] A Faster and Efficient Constraint Verification Methodology for GFX SOCs 1B3 - [2910] Breaking Down Barriers: Achieving Seamless Protocol Conversion with UVM Component Layering Paper Session 1C (Verification & Validation) 1C1 – [4003] Tabled Data Into Query Able Data key	 2B1 – [779] Pseudo–LRU Not Efficient in Real World? Use Formal Verification to Bridge the Gap 2B2 – [264] Paradigm Shift In Power Aware Simulation Using Formal Techniques 2B3 – [2523] Covering all the bases: Coverage-driven Formal Verification Sign-off of Pipelined Error Detection Filter Tea B Paper Session 2C (Formal Verification) 2C1 – [2546] When Last Minute Formal Verification Strikes Gold: A Case Study on Finding Starvations and Deadlocks in a Project nearing Tape-in using RTL embedded 	 3B1 – [8516] Tackling the verification complexities of a processor subsystem through Portable stimulus 3B2 - [285] UVM Sequence Layering for Register Sequences 3B3 – [1126] HISIG- An Efficient Gate Level Simulation Flow for a Hard IP Inside a Soft IP reak & Networking Paper Session 3C (Design & Verif. Reuse & Automation) 3C1 – [2750] Performance Analysis and Acceleration of High Bandwidth Memory System 	4B1 – [9164] Holistic Verifie SoC using BHMVC and Pe 4B2 – [2784] RISC V Subsy ASIL D 4B3 – [9612] Formal Verifie Hardware Security Paper Se 4C1 – [1147] Statistical Ar	cation of Bus Health Monitor in Automotive araHunter stem Diagnostic Coverage Closure Flow for cation + CIA Triad: Winning Formula for ession 4C (Static Verification) malysis of Clock Domain Crossings	11:15am to			
14:30 14:30 15:00 15:30 16:00 16:15 16:15	16:00 15:00 15:30 16:00 16:15 17:45 16:45	 1B1 - [6285] Netlist Enabled Emulation Platform for Accelerated Gate Level Verification 1B2 - [2304] A Faster and Efficient Constraint Verification Methodology for GFX SOCs 1B3 - [2910] Breaking Down Barriers: Achieving Seamless Protocol Conversion with UVM Component Layering Paper Session 1C (Verification & Validation) 1C1 - [4003] Tabled Data Into Query Able Data key concepts demonstrated using DDR5 example 1C2 - [6862] A Generic Verification Methodology for Chip 	 2B1 – [779] Pseudo–LRU Not Efficient in Real World? Use Formal Verification to Bridge the Gap 2B2 – [264] Paradigm Shift In Power Aware Simulation Using Formal Techniques 2B3 – [2523] Covering all the bases: Coverage-driven Formal Verification Sign-off of Pipelined Error Detection Filter Tea B Paper Session 2C (Formal Verification) 2C1 – [2546] When Last Minute Formal Verification Strikes Gold: A Case Study on Finding Starvations and Deadlocks in a Project nearing Tape-in using RTL embedded assertions 2C2 – [6610] Raising the Bar: Achieving Formal Verification Sign-Off for Complex Algorithmic Designs, with a Dot 	 3B1 – [8516] Tackling the verification complexities of a processor subsystem through Portable stimulus 3B2 - [285] UVM Sequence Layering for Register Sequences 3B3 – [1126] HISIG- An Efficient Gate Level Simulation Flow for a Hard IP Inside a Soft IP reak & Networking Paper Session 3C (Design & Verif. Reuse & Automation) 3C1 – [2750] Performance Analysis and Acceleration of High Bandwidth Memory System 3C2 – [3142] An Efficient Verification Methodology to Achieve DV Sign-off with Emphasis on Quality and Quicker 	 4B1 – [9164] Holistic Verific SoC using BHMVC and Pol 4B2 – [2784] RISC V Subsy ASIL D 4B3 – [9612] Formal Verific Hardware Security Paper Se 4C1 – [1147] Statistical Arr Properties for Formal and 	cation of Bus Health Monitor in Automotive araHunter stem Diagnostic Coverage Closure Flow for cation + CIA Triad: Winning Formula for ession 4C (Static Verification) malysis of Clock Domain Crossings	11:15am to 5:45pm			
14:30 14:30 15:00 15:30 16:00 16:15 16:15 16:45	16:00 15:00 15:30 16:00 16:15 16:45 17:15	 1B1 – [6285] Netlist Enabled Emulation Platform for Accelerated Gate Level Verification 1B2 – [2304] A Faster and Efficient Constraint Verification Methodology for GFX SOCs 1B3 - [2910] Breaking Down Barriers: Achieving Seamless Protocol Conversion with UVM Component Layering Paper Session 1C (Verification & Validation) 1C1 – [4003] Tabled Data Into Query Able Data key concepts demonstrated using DDR5 example 1C2 – [6862] A Generic Verification Methodology for Chip to Chip Interrupt Handling in a Multi-Chip SoC (3DIC) 1C3 - [8579] Automotive RADAR bitfields Verification to 	 281 – [779] Pseudo–LRU Not Efficient in Real World? Use Formal Verification to Bridge the Gap 282 – [264] Paradigm Shift In Power Aware Simulation Using Formal Techniques 283 – [2523] Covering all the bases: Coverage-driven Formal Verification Sign-off of Pipelined Error Detection Filter Tea B Paper Session 2C (Formal Verification) 2C1 – [2546] When Last Minute Formal Verification Strikes Gold: A Case Study on Finding Starvations and Deadlocks in a Project nearing Tape-in using RTL embedded assertions 2C2 – [6610] Raising the Bar: Achieving Formal Verification Sign-Off for Complex Algorithmic Designs, with a Dot Product Accumulate Case Study 2C3 – [4818] Accelerating SoC Sensor Network Verification Sign-off through Dynamic Simulation and 	 3B1 – [8516] Tackling the verification complexities of a processor subsystem through Portable stimulus 3B2 - [285] UVM Sequence Layering for Register Sequences 3B3 – [1126] HISIG- An Efficient Gate Level Simulation Flow for a Hard IP Inside a Soft IP reak & Networking Paper Session 3C (Design & Verif. Reuse & Automation) 3C1 – [2750] Performance Analysis and Acceleration of High Bandwidth Memory System 3C2 – [3142] An Efficient Verification Methodology to Achieve DV Sign-off with Emphasis on Quality and Quicker DV Cycle 3C3 – [6744] Disaggregated methodology in Multi-die 	 4B1 – [9164] Holistic Verifie SoC using BHMVC and Perifie AB2 – [2784] RISC V Subsy ASIL D 4B3 – [9612] Formal Verifie Hardware Security Paper Se 4C1 – [1147] Statistical Art Properties for Formal and AC2 – [3353] PropGen: Art Properties for Formal and AC3 – [2722] Techniques 	cation of Bus Health Monitor in Automotive araHunter stem Diagnostic Coverage Closure Flow for cation + CIA Triad: Winning Formula for ession 4C (Static Verification) malysis of Clock Domain Crossings in Automated Flow to Generate SVA I Simulation methods	11:15am to 5:45pm			